Главная | Регистрация | Вход
Главная » » Стехиометрические законы химии
12:40 Стехиометрические законы химии | |||||||||||||||||||||||||||||||||||
1. Закон сохранения массы веществ Масса веществ, вступивших в реакцию, равна массе веществ, образовавшихся в результате реакции. С точки зрения атомно-молекулярного учения этот закон объясняется тем, что при химических реакциях общее количество атомов не изменяется, а происходит лишь их перегруппировка. Закон сохранения массы веществ является основным законом химии, все расчёты по химическим реакциям производятся на его основе. Именно с открытием этого закона связывают возникновением современной химии как точной науки. С законом сохранения массы веществ тесно связан закон сохранения энергии: энергия не возникает из ничего и не исчезает бесследно, но одни её виды могут превращаться в другие в строго эквивалентных количествах. Так при разложении воды, кислот, щелочей или солей посредством электрического тока электрическая энергия превращается в химическую. То же наблюдается при зарядке аккумулятора. Обратный процесс — превращение химической энергии в электрическую — происходит при разрядке аккумулятора. Альберт Эйнштейн показал, что между массой тела и его энергией Е существует связь, выражаемая соотношением: E = mc2 где с - скорость света в вакууме, равная 300 000 км/с. Это уравнение применимо ко всем энергетическим процессам; в том числе к химическим и ядерным реакциям. Из него следует, что если масса системы изменяется, то происходит изменение и её энергии, и наоборот: изменение внутренней энергии системы всегда сопровождается изменением массы. Вследствие химических реакций всегда выделяется или поглощается энергия. Поэтому строго говоря, масса веществ, участвующих в этих реакциях, должна изменяться: при выделении теплоты — уменьшаться, а при поглощении — увеличиваться. Однако вследствие очень большой величины множителя с2 изменения массы при химических реакциях настолько малы, что определить их существующими методами невозможно. Рассчитаем, например, какому количеству энергии соответствует изменение массы на 1 г: Е = 1·10-3·(3·108)2 = 9·1013 Дж. При образовании 1 моля воды из газообразных водорода и кислорода выделяется 285,9 кДж энергии, то уменьшение массы составит 3,2·10-9 г. Эта величина далеко за пределами возможностей взвешивания. Тепловые эффекты химических реакций таковы по своей величине, что изменение массы веществ в их результате не могут быть изменены. Поэтому закон сохранения массы веществ не могут быть измерены. Поэтому закон сохранения массы веществ соблюдается практически при всех химических реакциях.
2. Закон постоянства состава Закон сохранения массы послужил основой для изучения количественного состава различных химических соединений. Многочисленные опыты показали, что качественный и количественный состав различных сложных веществ постоянен и не зависит от способа их получения. Так, 44 г углекислого газа (СО2) соединяясь с 56 негашеной извести (СаО), образуют 100 г мела (СаСО3). При этом никакие другие вещества не образуются, а данные соединения вступают в реакцию полностью. Если через негашёную известь пропустить избыток углекислого газа, то он не будет реагировать с образовавшимся мелом. Чистая (без примесей) вода независимо от того, получена она синтезом из водорода и кислорода, при нейтрализации щёлочи кислотой или при любой другой реакции, и чистая природная вода всегда состоит из водорода и кислорода в соотношении 1:8 по массе. Французский учёный Жан Луи Пруст, обобщив большой экспериментальный материал о составе различных веществ, сформулировал в 1799 г закон постоянства состава: каждое химическое соединение имеет постоянный качественный и количественный состав независимо от способа его получения. Этот закон находится в полном соответствии с атомно-молекулярным учением. Действительно, молекула любого вещества состоит из вполне определённого количества атомов, имеющих постоянную массу. Поэтому её массовый состав и, следовательно, массовый состав вещества постоянны независимо от способа его получения. Такие соединения называются дальтониды. Современная химия располагает данными, из которых следует, что закону постоянства состава подчиняются главным образом вещества, имеющие молекулярную структуру, если же вещества не имеют молекулярной структуры, то возможны отклонения от этого закона. Действительно соединения переменного состава, называемые бертолиды, существуют и с каждым годом их открывают всё больше. Эти соединения не имеют определённой химической формулы. Впервые бертолиды были обнаружены в системах, состоящих их нескольких металлов (интерметаллические сплавы), затем среди оксидов, сульфидов, селенидов металлов и др. Например, оксид титана (II) имеет состав от ТiO0,59 до TiO1,33, в соединении таллия с висмутом на 1 часть таллия приходится от 1,24 до 1,82 частей висмута по массе. В природе бертолиды распространены значительно шире, чем дальтониды. Отклонения от закона постоянства состава может быть обусловлено не только изменениями атомного состава соединений, но и причинами связанными с наличием в природе изотопов. Например, для водорода известны три изотопа с массовыми числами 1 (протий), 2 (дейтерий) и 3 (тритий). Естественно, что в молекуле воды, образованные первым, вторым или третьим изотопом, на 1 атом кислорода приходятся 2 атома водорода (атомный состав постоянен), однако процентное содержание кислорода в этих соединениях переменно и составляет соответственно 88,89; 80 и 72,73 %.
3. Закон кратных отношений. Закон объёмных отношений. Известны случаи, когда два элемента, соединяясь между собой в различных количественных соотношениях, образуют несколько химических соединений. Так, углерод с кислородом образуют два соединения следующего состава: монооксид углерода (угарный газ) СО — 3 весовых части углерода и 4 весовых части кислорода; диоксид углерода (углекислый газ) СО2 — 3 весовых части углерода и 8 весовых частей кислорода. Количество весовых частей кислорода, приходящееся в этих соединениях на одно и то же количество углерода (3 весовых части), соотносится между собой как 4:8 или 1:2. Азот с кислородом образует пять оксидов (табл. 1).
Таблица 1. Состав оксидов азота
Количество весовых частей кислорода приходящееся в этих соединениях на одну весовую часть азота соотносится между собой как 0,57 : 1,14 : 1,71 : 2,28 : 2,85 = 1 : 2 : 3 : 4 : 5. Данные о количественном составе различных соединений, образованных двумя элементами, и исходя из атомистических представлений, английский химик Джон Дальтон в 1803 году сформулировал закон кратных отношений: если два элемента образуют между собой несколько соединений, то на одно и то же весовое количество одного элемента приходятся такие весовые количества другого элемента, которые относятся между собой как небольшие целые числа. То, что элементы вступают в соединения определенными порциями, явилось ещё одним подтверждением правильности атомистического учения и объяснения с его позиций химических процессов. Однако атомистические представления сами по себе не могли объяснить, например, количественных соотношений, которые наблюдаются в химических реакциях между газами. Французский учёный Ж. Гей-Люссак, изучая химические реакции между газообразными веществами, обратил внимание на соотношения объёмов реагирующих газов и газообразных продуктов реакции. Он установил, что 1 л хлора целиком вступает в реакцию с 1 л водорода с образованием 2 л хлороводорода; 1 л кислорода взаимодействует без остатка с 2 л водорода, образуя 2 л водяного пара. Эти опытные данные Гей-Люссак обобщил в законе объёмный отношений: Объёмы реагирующих газообразных веществ относятся между собой и к объемам образующихся газообразных веществ как небольшие целые числа.
4. Закон Авогадро Итальянский физик Амедео Авогадро сделал очень важное дополнение к атомистической теории. Он ввел понятие о молекуле как мельчайшей частице вещества, способной к самостоятельному существованию. Он использовал понятие молекулы для объяснения простых объёмных отношений между реагирующими газами. В 1811 году он выдвинул следующую гипотезу: в равных объёмах различных газов при одинаковых условиях (давлении и температуре) содержится равное число молекул. Авогадро принял, что молекулы простых газов состоят из двух атомов: О2, Н2, Cl2, N2. При этом допущении реакцию между хлором и водородом, приводящую к образованию хлороводорода можно представить уравнением: Н2 + Сl2 = 2 HСl из которого видно, что из одной молекулы водорода и одной молекулы хлора образуются две молекулы хлороводорода. Следовательно, и объём, занимаемый хлороводородом, должен быть вдвое больше объёма вступившего в реакцию водорода или хлора. Суммарный же объём исходных газов в соответствии с приведённым уравнением должен быть равен объёму образовавшегося хлороводорода. Гипотеза Авогадро была подтверждена большим числом экспериментальных данных и вошла в науку под названием закона Авогадро. Этот закон вводил в науку представление о молекулах, как мельчайших частицах элемента. | |||||||||||||||||||||||||||||||||||
|
Всего комментариев: 0 | |